Mastering Spring MVC 3

And its @Controller programming model

Get the code for the demos in this presentation at

e http://src.springsource.ora/svn/spring-samples/mvc-showcase

€ spring

A division of VITIWaAre

© 2010 SpringSource, A division of VMware. All rights reserved

http://src.springsource.org/svn/spring-samples/mvc-showcase
http://src.springsource.org/svn/spring-samples/mvc-showcase

Topics

= Getting started

= [ntroduction to the MVC programming model

= Mapping HTTP requests

= Obtaining request input

= Generating responses

= Rendering views

= Type conversion, validation, forms, and file upload
= Exception handling

= Testing

‘ m A dhvision of VITIWANE

Getting started

= Create a new Spring MVC project from a template

* Most use Roo to do this, either from an IDE like STS or the command-line

Typical setup:

= One DispatcherServlet registered in web.xml

* FrontController that dispatches web requests to your application logic
* Generally the “default servlet” mapped to “/”

= Two Spring Containers (or ApplicationContexts) instantiated
* 1 “root” context to host “shared resources” required by Servlets / Filters

* 1 “web” context to host local application components delegated to by the
DispatcherServlet

 Your application components are typically discovered via classpath scanning

€ spring

Demo
Typical Spring MVC project structure

Introduction to the MVC programming model

= DispatcherServlet requests are mapped to @Controller methods
* @RequestMapping annotation used to define mapping rules
* Method parameters used to obtain request input
* Method return values used to generate responses

= Simplest possible @Controller

@Controller

public class HomeController {
@RequestMapping(“/”)
public @ResponseBody String home() {

return “hello world”;

Demo

Simplest possible @Controller
org.springframework.samples.mvc.simple

Mapping requests

= By path
* @RequestMapping(“path”)

= By HTTP method

* @RequestMapping(“path”, method=RequestMethod.GET)
« POST, PUT, DELETE, OPTIONS, and TRACE are are also supported

= By presence of query parameter
* @RequestMapping(“path”, method=RequestMethod.GET, params="foo")

* Negation also supported: params={ “foo”, “!bar” })

= By presence of request header
* @RequestMapping(“path”, header="content-type=text/*”)
* Negation also supported

§ spring

Mapping requests (2)

= Simplest possible @Controller revisited

@Controller
public class HomeController {
@RequestMapping(“/”, method=RequestMethod.GET,
headers="Accept=text/plain”)
public @ResponseBody String home() {

return “hello world”;

Demo

Mapping requests
org.springframework.samples.mvc.mapping

Request mapping at the class level

= @RequestMapping can be used at the class level

» Concise way to map all requests within a path to a @Controller

@Controller
@RequestMapping(“/accounts/*)”

public class AccountsController {

@RequestMapping(“active”)
public @ResponseBody List<Account> active() { + }

@RequestMapping(“inactive”)

public @ResponseBody List<Account> inactive() { + }

Request mapping at the class level (2)

= The same rules expressed with method-level mapping only:

@Controller

public class AccountsController {

@RequestMapping(“/accounts/active”)
public @ResponseBody List<Account> active() { + }

@RequestMapping(“/accounts/inactive”)

public @ResponseBody List<Account> inactive() { + }

Demo

@RequestMapping at the class level
org.springframework.samples.mvc.mapping

Obtaining request data

= Obtain request data by declaring method arguments
* A query parameter value
 @RequestParam(“name”)

* A group of query parameter values
« A custom JavaBean with a getName()/setName() pair for each parameter

* A path element value
o @PathVariable(“var”)

* Arequest header value
 @RequestHeader(“name”)

e A cookie value
« @CookieValue(“name”)

* The request body
* @RequestBody

* The request body and any request header
o HitpEntity<T>

§ spring

Demo

Obtaining request data
org.springframework.samples.mvc.data

Injecting standard objects

= A number of “standard arguments” can also be injected

* Simply declare the argument you need

HttpServietRequest (or its more portable WebRequest wrapper)

= Principal

Locale

InputStream

= Reader

HttpServietResponse

OutputStream
= Writer
= HttpSession

€ spring JPOT—

Injecting custom objects

= Custom object injectors can also be defined
* Implement the WebArgumentResolver extension point
* Register with the AnnotationMethodHandlerAdapter

public interface WebArgumentResolver {

Object resolveArgument(MethodParameter param,

NativeWebRequest request);

Demo

Injecting standard and custom objects
org.springframework.samples.mvc.data.standard
org.springframework.samples.mvc.data.custom

Generating responses

= Return a POJO annotated with @ResponseBody
* POJO marshaled as the body of the response

or

= Return a new ResponseEntity<T> object

* More powerful; allows for setting custom response headers and status code

Demo

Generating responses
org.springframework.samples.mvc.response

HttpMessageConverters

Behind the scenes, a HttpMessageConverter underpins reading the
request body and generating the response

= Multiple converters may be registered for different content types

= For @RequestBody, the first converter that can read the POSTed
“Content-Type” into the desired method parameter type is used

= For @ResponseBody, the first converter that can write the method
return type into one of the client’s “Accept”’ed content types is used

 Also applies to HttpResponseEntity<T> (can also force the content-type)

= Default set of HttpMessageConverters registered for you

= Can write your own

‘ spring PO—— -:

20

Default HttpMessageConverters

= StringHttpMessageConverter

* Reads “text/*” into Strings; writes Strings as “text/plain”

= FormHttpMessageConverter
* Reads “application/x-www-form-urlencoded” into MultiValueMap<String, String>
» Writes MultiValueMap<String, String> into “application/x-www-form-urlencoded”

= ByteArrayMessageConverter

* Reads “*/*” into a byte[]; writes Objects as “application/octet-stream”

= Jaxb2RootElementHttpMessageConverter
* Reads "text/xml” || “application/xml” into Objects annotated by JAXB annotations
* Writes JAXB-annotated Objects as “text/xml” or “application/xml”
* Only registered by default if JAXB is present on the classpath

€ spring

Default HttpMessageConverters (2)

= MappingJacksonHttpMessageConverter
* Reads “application/json” into Objects; writes Objects as “application/json”
* Delegates to the Jackson JSON Processing Library
* Only registered by default if Jackson APl is in your classpath

= SourceHttpMessageConverter
» Reads “text/xml” or “application/xml” into javax.xml.transform.Source

» Writes javax.xml.transform.Source to “text/xml” or “application/xml”

= ResourceHttpMessageConverter

* Reads/writes org.springframework.core.io.Resource objects

= AtomFeed/RssChannelHttpMessageConverter
* Reads/writes Rome Feed and RssChannels (application/atom+xml | rss+xml)
* Only registered by default if Rome is present in your classpath

‘ spring A hvison of VITIVOIE

Demo

Default HttpMessageConverters
org.springframework.samples.mvc.messageconverters

Other HttpMessageConverters options available to you

= BufferedimageHttpMessageConverter

* Reads/writes mime-types supported by Java Image /O into Bufferedimage

= MarshallingHttpMessageConverter
» Reads/writes XML but allows for pluggability in Marshalling technology

= Register your own or customize existing ones by setting the
“messageConverters” property of the
AnnotationMethodHandlerAdapter bean

» Easy to override the defaults using a BeanPostProcessor

Rendering views

= A DispatcherServlet can also render Views
 Alternative to having a HttpMessageConverter write the response body
» Designed for generating text/* content from a template

= Declare a Model parameter to export data to the view

» Call model.addAttribute(“name”, value) for each item to export

= Select the view by to render by returning a String
* Do not use @ResponseBody annotation in this case
» Configured ViewResolver maps name to a View instance

= Default ViewResolver forwards to internal servlet resources

* Many other options: JSP, Tiles, Freemarker, Velocity, iText PDF, JExcel, Jasper
Reports, and XSLT are all supported out of the box

e Can also write your own View integrations

‘ spring A hvison of VITIVOIE

Demo

Rendering views
org.springframework.samples.mvc.views

Views vs. @ResponseBody (aka HttpMessageConverters)

= Two different systems exist for rendering responses
* ViewResolver + View

* HitpMessageConverter

= Triggered in different ways
* Render a view by returning a String

* Write a message by returning a @ResponseBody Object or ResponseEntity

= Which one do | use?

» Use views to generate documents for display in a web browser
« HTML, PDF, etc

* Use @ResponseBody to exchange data with web service clients
* JSON, XML, etc

§ spring

Type conversion

= Type conversion happens automatically

= A common “ConversionService” underpins the places where type
conversion is required

* Always used with @RequestParam, JavaBean, @PathVariable, and
@RequestHeader, and @CookieValue

» HttpMessageConverter may use when reading and writing objects
» for @RequestBody, @ResponseBody, HttpEntity, ResponseEntity

= All major conversion requirements satisfied out-of-the-box

* Primitives, Strings, Dates, Collections, Maps, custom value objects

= Can declare annotation-based conversion rules

* @NumberFormat, @DateTimeFormat, your own custom @Format annotation

= Elegant SPI for implementing your own converters

Demo

Type Conversion System
org.springframework.samples.mvc.convert

Validation

= Trigger validation by marking a JavaBean parameter as @Valid
* The JavaBean will be passed to a Validator for validation
* JSR-303 auto-configured if a provider is present on the classpath

= Binding and validation errors can be trapped and introspected by
declaring a BindingResult parameter

* Must follow the JavaBean parameter in the method signature

e Errors automatically exported in the model when rendering views

» Not supported with other request parameter types (@RequestBody, etc)

Demo

Validation
org.springframework.samples.mvc.validation

Forms

= Get a new form
* Export a JavaBean to the view as the “form bean” or “form backing object”

e Can pre-populate form using initial bean property values or client query
parameters

» Convenient form tags/macros exist to simplify rendering form fields

= Post a form
* Declare JavaBean argument to trigger binding and validation
* Declare a BindingResult argument to query binding and validation results
* Re-render form view if validation errors are present

» Redirect after successful post by returning target resource URL prefixed with
special “redirect:” directive
» Store any success messages in a flash map cleared after the next request

« Flash map contents are cached temporarily in the session until the next request
completes, then cleared

€ spring

Demo

Forms
org.springframework.samples.mvc.form

Fileupload

= File Upload Form
» Set form encoding to “multipart/form-data”
» Declare input element of type “file”

= Upload Controller
* Map based on RequestMethod.POST
» Declare MultipartFile argument to bind file parameter

= A MultipartResolver bean must be registered in your servlet-context

* CommonsMultipartResolver most popular implementation
* Requires commons-fileupload and commons-io libraries

= Consider Tomcat 7’s (Servlet 3.0) native fileupload capability in the
future

§ spring

Demo

File Upload
org.springframework.samples.mvc.fileupload

Exception Handling

= Two-levels of Exception Handling
* @Controller level
* DispatcherServlet level

= @Controller level
* Annotate a separate method in your @Controller as a @ExceptionHandler
» Or simply catch the Exception yourself in your handler method

= DispatcherServlet level

* Rely on the DefaultHandlerExceptionResolver
« Maps common exceptions to appropriate status codes

* Supplement with your own custom HandlerExceptionResolver as needed

Demo

Exception Handling
org.springframework.samples.mvc.exceptions

Testing

= Unit Testing
» Controllers are just POJOs - just new them up and test them!

* Inject mock dependencies using your favorite mocking library (Mockito)

= HttpServilet Mocks

» Useful when you have a Servlet APl dependency in your @Controller
* MockHttpServletRequest, MockHttpServietResponse, MockServietContext

= Integration Testing

» Selinium-based acceptance tests great way to exercise end-to-end behavior

 Also useful for automating the testing of @RequestMapping rules

Demo
Testing

Resources

Reference Manual

* http://www.springsource.org/documentation
Samples

e http://src.springsource.org/svn/spring-samples/mvc-showcase
e http://src.springsource.org/svn/spring-samples
= Forum

e http://forum.springframework.org
= |ssue Tracker

* http://jira.springsource.org/browse/SPR
Blog

e http://blog.springsource.com
Twitter

* Follow @kdonald, @poutsma, @springrod, @benalexau

§ spring

http://www.springsource.org/documentation
http://www.springsource.org/documentation
http://svn.springsource.org/spring-samples/mvc-showcase
http://svn.springsource.org/spring-samples/mvc-showcase
http://svn.springsource.org/spring-samples/mvc-showcase
http://svn.springsource.org/spring-samples/mvc-showcase
http://forum.springframework.org
http://forum.springframework.org
http://jira.springsource.org/browse/SPR
http://jira.springsource.org/browse/SPR
http://blog.springsource.com
http://blog.springsource.com

Enjoy being an application developer!
Questions?

